ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi GIF version

Theorem dmaddpi 6515
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4650 . . 3 dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ dom +𝑜 )
2 fnoa 6050 . . . . 5 +𝑜 Fn (On × On)
3 fndm 5018 . . . . 5 ( +𝑜 Fn (On × On) → dom +𝑜 = (On × On))
42, 3ax-mp 7 . . . 4 dom +𝑜 = (On × On)
54ineq2i 3164 . . 3 ((N × N) ∩ dom +𝑜 ) = ((N × N) ∩ (On × On))
61, 5eqtri 2101 . 2 dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 6495 . . 3 +N = ( +𝑜 ↾ (N × N))
87dmeqi 4554 . 2 dom +N = dom ( +𝑜 ↾ (N × N))
9 df-ni 6494 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3098 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3029 . . . . . 6 N ⊆ ω
12 omsson 4353 . . . . . 6 ω ⊆ On
1311, 12sstri 3008 . . . . 5 N ⊆ On
14 anidm 388 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 144 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4463 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 7 . . 3 (N × N) ⊆ (On × On)
18 dfss 2987 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 143 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2111 1 dom +N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  cdif 2970  cin 2972  wss 2973  c0 3251  {csn 3398  Oncon0 4118  ωcom 4331   × cxp 4361  dom cdm 4363  cres 4365   Fn wfn 4917   +𝑜 coa 6021  Ncnpi 6462   +N cpli 6463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-ni 6494  df-pli 6495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator