ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsn GIF version

Theorem difsn 3523
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 3517 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 107 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 eleq1 2141 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
43biimpcd 157 . . . . . . 7 (𝑥𝐵 → (𝑥 = 𝐴𝐴𝐵))
54necon3bd 2288 . . . . . 6 (𝑥𝐵 → (¬ 𝐴𝐵𝑥𝐴))
65com12 30 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
76ancld 318 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
82, 7impbid2 141 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
91, 8syl5bb 190 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
109eqrdv 2079 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wcel 1433  wne 2245  cdif 2970  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-sn 3404
This theorem is referenced by:  difsnb  3528  dfn2  8301
  Copyright terms: Public domain W3C validator