![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disj1 | GIF version |
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
disj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3292 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
2 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 182 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∩ cin 2972 ∅c0 3251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-in 2979 df-nul 3252 |
This theorem is referenced by: reldisj 3295 disj3 3296 undif4 3306 disjsn 3454 funun 4964 fzodisj 9187 |
Copyright terms: Public domain | W3C validator |