ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif4 GIF version

Theorem undif4 3306
Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undif4 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))

Proof of Theorem undif4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm2.621 698 . . . . . . 7 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) → ¬ 𝑥𝐶))
2 olc 664 . . . . . . 7 𝑥𝐶 → (𝑥𝐴 ∨ ¬ 𝑥𝐶))
31, 2impbid1 140 . . . . . 6 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) ↔ ¬ 𝑥𝐶))
43anbi2d 451 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐶) → (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶)))
5 eldif 2982 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65orbi2i 711 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 ordi 762 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
86, 7bitri 182 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
9 elun 3113 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
109anbi1i 445 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
114, 8, 103bitr4g 221 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶)))
12 elun 3113 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
13 eldif 2982 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶))
1411, 12, 133bitr4g 221 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐶) → (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1514alimi 1384 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶) → ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
16 disj1 3294 . 2 ((𝐴𝐶) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶))
17 dfcleq 2075 . 2 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1815, 16, 173imtr4i 199 1 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  wal 1282   = wceq 1284  wcel 1433  cdif 2970  cun 2971  cin 2972  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-nul 3252
This theorem is referenced by:  phplem1  6338
  Copyright terms: Public domain W3C validator