| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjxsn | GIF version | ||
| Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 3768 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
| 2 | moeq 2767 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 3 | elsni 3416 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 270 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
| 5 | 4 | moimi 2006 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
| 6 | 2, 5 | ax-mp 7 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | mpgbir 1382 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∃*wmo 1942 {csn 3398 Disj wdisj 3766 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rmo 2356 df-v 2603 df-sn 3404 df-disj 3767 |
| This theorem is referenced by: disjx0 3784 |
| Copyright terms: Public domain | W3C validator |