ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgf GIF version

Theorem elabgf 2736
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1 𝑥𝐴
elabgf.2 𝑥𝜓
elabgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgf (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2 𝑥𝐴
2 nfab1 2221 . . . 4 𝑥{𝑥𝜑}
31, 2nfel 2227 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
4 elabgf.2 . . 3 𝑥𝜓
53, 4nfbi 1521 . 2 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 eleq1 2141 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
7 elabgf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7bibi12d 233 . 2 (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
9 abid 2069 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
101, 5, 8, 9vtoclgf 2657 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wnf 1389  wcel 1433  {cab 2067  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  elabf  2737  elabg  2739  elab3gf  2743  elrabf  2747  bj-intabssel  10599
  Copyright terms: Public domain W3C validator