Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgft1 GIF version

Theorem elabgft1 10588
Description: One implication of elabgf 2736, in closed form. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1 𝑥𝐴
elabgf1.nf2 𝑥𝜓
Assertion
Ref Expression
elabgft1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))

Proof of Theorem elabgft1
StepHypRef Expression
1 bi1 116 . . . . . 6 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜑))
2 imim2 54 . . . . . 6 ((𝜑𝜓) → ((𝐴 ∈ {𝑥𝜑} → 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
31, 2syl5 32 . . . . 5 ((𝜑𝜓) → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
43imim2i 12 . . . 4 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))))
54alimi 1384 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))))
6 elabgf1.nf1 . . . 4 𝑥𝐴
7 nfab1 2221 . . . . . 6 𝑥{𝑥𝜑}
86, 7nfel 2227 . . . . 5 𝑥 𝐴 ∈ {𝑥𝜑}
9 elabgf1.nf2 . . . . 5 𝑥𝜓
108, 9nfim 1504 . . . 4 𝑥(𝐴 ∈ {𝑥𝜑} → 𝜓)
11 elabgf0 10587 . . . 4 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
126, 10, 11bj-vtoclgft 10585 . . 3 (∀𝑥(𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝐴 ∈ {𝑥𝜑} → 𝜓))) → (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
135, 12syl 14 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} → 𝜓)))
1413pm2.43d 49 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wnf 1389  wcel 1433  {cab 2067  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  elabgf1  10589
  Copyright terms: Public domain W3C validator