![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eloprabg | GIF version |
Description: The law of concretion for operation class abstraction. Compare elopab 4013. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
eloprabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
eloprabg.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
eloprabg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | eloprabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | eloprabg.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
4 | 1, 2, 3 | syl3an9b 1241 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜃)) |
5 | 4 | eloprabga 5611 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 〈cop 3401 {coprab 5533 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-oprab 5536 |
This theorem is referenced by: ov 5640 ovg 5659 |
Copyright terms: Public domain | W3C validator |