ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc GIF version

Theorem eqelsuc 4174
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1 𝐴 ∈ V
Assertion
Ref Expression
eqelsuc (𝐴 = 𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3 𝐴 ∈ V
21sucid 4172 . 2 𝐴 ∈ suc 𝐴
3 suceq 4157 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
42, 3syl5eleq 2167 1 (𝐴 = 𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator