| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunsuc | GIF version | ||
| Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunsuc.1 | ⊢ 𝐴 ∈ V |
| iunsuc.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4126 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | iuneq1 3691 | . . 3 ⊢ (suc 𝐴 = (𝐴 ∪ {𝐴}) → ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵) | |
| 3 | 1, 2 | ax-mp 7 | . 2 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 |
| 4 | iunxun 3756 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) | |
| 5 | iunsuc.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | iunsuc.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 7 | 5, 6 | iunxsn 3754 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| 8 | 7 | uneq2i 3123 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| 9 | 3, 4, 8 | 3eqtri 2105 | 1 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 {csn 3398 ∪ ciun 3678 suc csuc 4120 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-iun 3680 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |