![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2083 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
2 | eqtr 2098 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | sylan2b 281 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: eueq 2763 euind 2779 reuind 2795 preqsn 3567 eusv1 4202 funopg 4954 foco 5136 mpt2fun 5623 enq0tr 6624 lteupri 6807 elrealeu 6998 rereceu 7055 receuap 7759 xrltso 8871 xrlttri3 8872 odd2np1 10272 |
Copyright terms: Public domain | W3C validator |