ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltso GIF version

Theorem xrltso 8871
Description: 'Less than' is a weakly linear ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltso < Or ℝ*

Proof of Theorem xrltso
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltnr 8855 . . . . 5 (𝑥 ∈ ℝ* → ¬ 𝑥 < 𝑥)
21adantl 271 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → ¬ 𝑥 < 𝑥)
3 xrlttr 8870 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
43adantl 271 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 4059 . . 3 (⊤ → < Po ℝ*)
65trud 1293 . 2 < Po ℝ*
7 elxr 8850 . . . . 5 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
8 elxr 8850 . . . . . . . . . 10 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
9 elxr 8850 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ* ↔ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞))
10 simplr 496 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
11 simpll 495 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ)
12 simpr 108 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
13 axltwlin 7180 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
1410, 11, 12, 13syl3anc 1169 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
15 ltpnf 8856 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → 𝑥 < +∞)
1615ad2antlr 472 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < +∞)
17 breq2 3789 . . . . . . . . . . . . . . . . . . 19 (𝑧 = +∞ → (𝑥 < 𝑧𝑥 < +∞))
1817adantl 271 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑥 < +∞))
1916, 18mpbird 165 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < 𝑧)
2019orcd 684 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑧 < 𝑦))
2120a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
22 mnflt 8858 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → -∞ < 𝑦)
2322ad2antrr 471 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → -∞ < 𝑦)
24 breq1 3788 . . . . . . . . . . . . . . . . . . 19 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
2524adantl 271 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
2623, 25mpbird 165 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
2726olcd 685 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑧𝑧 < 𝑦))
2827a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
2914, 21, 283jaodan 1237 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
309, 29sylan2b 281 . . . . . . . . . . . . 13 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
3130anasss 391 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
3231ancoms 264 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
33 ltpnf 8856 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < +∞)
3433adantl 271 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 < +∞)
35 breq2 3789 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
3635ad2antrr 471 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 < 𝑦𝑧 < +∞))
3734, 36mpbird 165 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 < 𝑦)
3837olcd 685 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑧𝑧 < 𝑦))
3938a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
4015ad2antlr 472 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < +∞)
4117adantl 271 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑥 < +∞))
4240, 41mpbird 165 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < 𝑧)
4342orcd 684 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑧 < 𝑦))
4443a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
45 mnfltpnf 8860 . . . . . . . . . . . . . . . . . . 19 -∞ < +∞
46 breq12 3790 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = -∞ ∧ 𝑦 = +∞) → (𝑧 < 𝑦 ↔ -∞ < +∞))
4746ancoms 264 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = +∞ ∧ 𝑧 = -∞) → (𝑧 < 𝑦 ↔ -∞ < +∞))
4845, 47mpbiri 166 . . . . . . . . . . . . . . . . . 18 ((𝑦 = +∞ ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
4948adantlr 460 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
5049olcd 685 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑧𝑧 < 𝑦))
5150a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5239, 44, 513jaodan 1237 . . . . . . . . . . . . . 14 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
539, 52sylan2b 281 . . . . . . . . . . . . 13 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5453anasss 391 . . . . . . . . . . . 12 ((𝑦 = +∞ ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5554ancoms 264 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
56 rexr 7164 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
57 nltmnf 8863 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
5856, 57syl 14 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ¬ 𝑥 < -∞)
5958ad2antrr 471 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → ¬ 𝑥 < -∞)
60 breq2 3789 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
6160adantl 271 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑥 < 𝑦𝑥 < -∞))
6259, 61mtbird 630 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → ¬ 𝑥 < 𝑦)
6362pm2.21d 581 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6432, 55, 633jaodan 1237 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
658, 64sylan2b 281 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6665anasss 391 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑧 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6766ancoms 264 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
68 pnfnlt 8862 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
6968ad2antlr 472 . . . . . . . . 9 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → ¬ +∞ < 𝑦)
70 breq1 3788 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
7170adantl 271 . . . . . . . . 9 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
7269, 71mtbird 630 . . . . . . . 8 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → ¬ 𝑥 < 𝑦)
7372pm2.21d 581 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
74 df-3or 920 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞) ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞))
759, 74bitri 182 . . . . . . . . . 10 (𝑧 ∈ ℝ* ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞))
76 mnfltxr 8861 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) → -∞ < 𝑧)
7776adantl 271 . . . . . . . . . . . . . 14 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → -∞ < 𝑧)
78 breq1 3788 . . . . . . . . . . . . . . 15 (𝑥 = -∞ → (𝑥 < 𝑧 ↔ -∞ < 𝑧))
7978adantr 270 . . . . . . . . . . . . . 14 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑧 ↔ -∞ < 𝑧))
8077, 79mpbird 165 . . . . . . . . . . . . 13 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → 𝑥 < 𝑧)
8180orcd 684 . . . . . . . . . . . 12 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑧𝑧 < 𝑦))
8281a1d 22 . . . . . . . . . . 11 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
83 eqtr3 2100 . . . . . . . . . . . . 13 ((𝑥 = -∞ ∧ 𝑧 = -∞) → 𝑥 = 𝑧)
8483breq1d 3795 . . . . . . . . . . . 12 ((𝑥 = -∞ ∧ 𝑧 = -∞) → (𝑥 < 𝑦𝑧 < 𝑦))
85 olc 664 . . . . . . . . . . . 12 (𝑧 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
8684, 85syl6bi 161 . . . . . . . . . . 11 ((𝑥 = -∞ ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8782, 86jaodan 743 . . . . . . . . . 10 ((𝑥 = -∞ ∧ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8875, 87sylan2b 281 . . . . . . . . 9 ((𝑥 = -∞ ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8988ancoms 264 . . . . . . . 8 ((𝑧 ∈ ℝ*𝑥 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9089adantlr 460 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9167, 73, 903jaodan 1237 . . . . . 6 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
92913impa 1133 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
937, 92syl3an3b 1207 . . . 4 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
94933com13 1143 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9594rgen3 2448 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
96 df-iso 4052 . 2 ( < Or ℝ* ↔ ( < Po ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))))
976, 95, 96mpbir2an 883 1 < Or ℝ*
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3o 918  w3a 919   = wceq 1284  wtru 1285  wcel 1433  wral 2348   class class class wbr 3785   Po wpo 4049   Or wor 4050  cr 6980  +∞cpnf 7150  -∞cmnf 7151  *cxr 7152   < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-po 4051  df-iso 4052  df-xp 4369  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158
This theorem is referenced by:  xrlelttr  8876  xrltletr  8877  xrletr  8878
  Copyright terms: Public domain W3C validator