| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqsn | GIF version | ||
| Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
| Ref | Expression |
|---|---|
| preqsn.1 | ⊢ 𝐴 ∈ V |
| preqsn.2 | ⊢ 𝐵 ∈ V |
| preqsn.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3412 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
| 2 | 1 | eqeq2i 2091 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
| 3 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | preqsn.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 6 | 3, 4, 5, 5 | preq12b 3562 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 7 | oridm 706 | . . . 4 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
| 8 | eqtr3 2100 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
| 9 | simpr 108 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 10 | 8, 9 | jca 300 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 11 | eqtr 2098 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 12 | simpr 108 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 13 | 11, 12 | jca 300 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
| 14 | 10, 13 | impbii 124 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 15 | 7, 14 | bitri 182 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 16 | 6, 15 | bitri 182 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 17 | 2, 16 | bitri 182 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 Vcvv 2601 {csn 3398 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: opeqsn 4007 relop 4504 |
| Copyright terms: Public domain | W3C validator |