![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euxfrdc | GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfrdc.1 | ⊢ 𝐴 ∈ V |
euxfrdc.2 | ⊢ ∃!𝑦 𝑥 = 𝐴 |
euxfrdc.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
euxfrdc | ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euxfrdc.2 | . . . . . 6 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
2 | euex 1971 | . . . . . 6 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 7 | . . . . 5 ⊢ ∃𝑦 𝑥 = 𝐴 |
4 | 3 | biantrur 297 | . . . 4 ⊢ (𝜑 ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) |
5 | 19.41v 1823 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) | |
6 | euxfrdc.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | pm5.32i 441 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
8 | 7 | exbii 1536 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
9 | 4, 5, 8 | 3bitr2i 206 | . . 3 ⊢ (𝜑 ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
10 | 9 | eubii 1950 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
11 | euxfrdc.1 | . . 3 ⊢ 𝐴 ∈ V | |
12 | 1 | eumoi 1974 | . . 3 ⊢ ∃*𝑦 𝑥 = 𝐴 |
13 | 11, 12 | euxfr2dc 2777 | . 2 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦𝜓)) |
14 | 10, 13 | syl5bb 190 | 1 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 DECID wdc 775 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 Vcvv 2601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |