ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfr2dc GIF version

Theorem euxfr2dc 2777
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2dc.1 𝐴 ∈ V
euxfr2dc.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2dc (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2dc
StepHypRef Expression
1 euxfr2dc.2 . . . . . . 7 ∃*𝑦 𝑥 = 𝐴
21moani 2011 . . . . . 6 ∃*𝑦(𝜑𝑥 = 𝐴)
3 ancom 262 . . . . . . 7 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
43mobii 1978 . . . . . 6 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
52, 4mpbi 143 . . . . 5 ∃*𝑦(𝑥 = 𝐴𝜑)
65ax-gen 1378 . . . 4 𝑥∃*𝑦(𝑥 = 𝐴𝜑)
7 excom 1594 . . . . . 6 (∃𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥𝑦(𝑥 = 𝐴𝜑))
87dcbii 780 . . . . 5 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) ↔ DECID𝑥𝑦(𝑥 = 𝐴𝜑))
9 2euswapdc 2032 . . . . 5 (DECID𝑥𝑦(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
108, 9sylbi 119 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
116, 10mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
12 moeq 2767 . . . . . . 7 ∃*𝑥 𝑥 = 𝐴
1312moani 2011 . . . . . 6 ∃*𝑥(𝜑𝑥 = 𝐴)
143mobii 1978 . . . . . 6 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1513, 14mpbi 143 . . . . 5 ∃*𝑥(𝑥 = 𝐴𝜑)
1615ax-gen 1378 . . . 4 𝑦∃*𝑥(𝑥 = 𝐴𝜑)
17 2euswapdc 2032 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))))
1816, 17mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
1911, 18impbid 127 . 2 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
20 euxfr2dc.1 . . . 4 𝐴 ∈ V
21 biidd 170 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
2220, 21ceqsexv 2638 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
2322eubii 1950 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
2419, 23syl6bb 194 1 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  DECID wdc 775  wal 1282   = wceq 1284  wex 1421  wcel 1433  ∃!weu 1941  ∃*wmo 1942  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by:  euxfrdc  2778
  Copyright terms: Public domain W3C validator