ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oiso GIF version

Theorem f1oiso 5485
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
f1oiso ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤
Allowed substitution hints:   𝐵(𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem f1oiso
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 5145 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
3 df-br 3786 . . . . 5 ((𝐻𝑣)𝑆(𝐻𝑢) ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆)
4 eleq2 2142 . . . . . . 7 (𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆 ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}))
5 f1fn 5113 . . . . . . . . 9 (𝐻:𝐴1-1𝐵𝐻 Fn 𝐴)
6 funfvex 5212 . . . . . . . . . . . 12 ((Fun 𝐻𝑣 ∈ dom 𝐻) → (𝐻𝑣) ∈ V)
76funfni 5019 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝑣𝐴) → (𝐻𝑣) ∈ V)
8 funfvex 5212 . . . . . . . . . . . 12 ((Fun 𝐻𝑢 ∈ dom 𝐻) → (𝐻𝑢) ∈ V)
98funfni 5019 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝑢𝐴) → (𝐻𝑢) ∈ V)
107, 9anim12dan 564 . . . . . . . . . 10 ((𝐻 Fn 𝐴 ∧ (𝑣𝐴𝑢𝐴)) → ((𝐻𝑣) ∈ V ∧ (𝐻𝑢) ∈ V))
11 eqeq1 2087 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑣) → (𝑧 = (𝐻𝑥) ↔ (𝐻𝑣) = (𝐻𝑥)))
1211anbi1d 452 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑣) → ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦))))
1312anbi1d 452 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑣) → (((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
14132rexbidv 2391 . . . . . . . . . . 11 (𝑧 = (𝐻𝑣) → (∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
15 eqeq1 2087 . . . . . . . . . . . . . 14 (𝑤 = (𝐻𝑢) → (𝑤 = (𝐻𝑦) ↔ (𝐻𝑢) = (𝐻𝑦)))
1615anbi2d 451 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑢) → (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦))))
1716anbi1d 452 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑢) → ((((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
18172rexbidv 2391 . . . . . . . . . . 11 (𝑤 = (𝐻𝑢) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
1914, 18opelopabg 4023 . . . . . . . . . 10 (((𝐻𝑣) ∈ V ∧ (𝐻𝑢) ∈ V) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
2010, 19syl 14 . . . . . . . . 9 ((𝐻 Fn 𝐴 ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
215, 20sylan 277 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
22 anass 393 . . . . . . . . . . . . . . 15 ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
23 f1fveq 5432 . . . . . . . . . . . . . . . . . 18 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑣 = 𝑥))
24 equcom 1633 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑥𝑥 = 𝑣)
2523, 24syl6bb 194 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2625anassrs 392 . . . . . . . . . . . . . . . 16 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2726anbi1d 452 . . . . . . . . . . . . . . 15 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2822, 27syl5bb 190 . . . . . . . . . . . . . 14 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2928rexbidv 2369 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
30 r19.42v 2511 . . . . . . . . . . . . 13 (∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
3129, 30syl6bb 194 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
3231rexbidva 2365 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
33 breq1 3788 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (𝑥𝑅𝑦𝑣𝑅𝑦))
3433anbi2d 451 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3534rexbidv 2369 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3635ceqsrexv 2725 . . . . . . . . . . . 12 (𝑣𝐴 → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3736adantl 271 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3832, 37bitrd 186 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
39 f1fveq 5432 . . . . . . . . . . . . . . 15 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑢 = 𝑦))
40 equcom 1633 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦𝑦 = 𝑢)
4139, 40syl6bb 194 . . . . . . . . . . . . . 14 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
4241anassrs 392 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
4342anbi1d 452 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢𝑣𝑅𝑦)))
4443rexbidva 2365 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦)))
45 breq2 3789 . . . . . . . . . . . . 13 (𝑦 = 𝑢 → (𝑣𝑅𝑦𝑣𝑅𝑢))
4645ceqsrexv 2725 . . . . . . . . . . . 12 (𝑢𝐴 → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4746adantl 271 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4844, 47bitrd 186 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4938, 48sylan9bb 449 . . . . . . . . 9 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ (𝐻:𝐴1-1𝐵𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
5049anandis 556 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
5121, 50bitrd 186 . . . . . . 7 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢))
524, 51sylan9bbr 450 . . . . . 6 (((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) ∧ 𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
5352an32s 532 . . . . 5 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
543, 53syl5rbb 191 . . . 4 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
5554ralrimivva 2443 . . 3 ((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
562, 55sylan 277 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
57 df-isom 4931 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢))))
581, 56, 57sylanbrc 408 1 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  wrex 2349  Vcvv 2601  cop 3401   class class class wbr 3785  {copab 3838   Fn wfn 4917  1-1wf1 4919  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by:  f1oiso2  5486
  Copyright terms: Public domain W3C validator