| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euf | GIF version | ||
| Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| euf.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| euf | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 1944 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | euf.1 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | ax-17 1459 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧) | |
| 4 | 2, 3 | hbbi 1480 | . . . 4 ⊢ ((𝜑 ↔ 𝑥 = 𝑧) → ∀𝑦(𝜑 ↔ 𝑥 = 𝑧)) |
| 5 | 4 | hbal 1406 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
| 6 | ax-17 1459 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 7 | equequ2 1639 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
| 8 | 7 | bibi2d 230 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑧) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
| 9 | 8 | albidv 1745 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 10 | 5, 6, 9 | cbvexh 1678 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 11 | 1, 10 | bitri 182 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∃!weu 1941 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-eu 1944 |
| This theorem is referenced by: eu1 1966 eumo0 1972 |
| Copyright terms: Public domain | W3C validator |