| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbbi | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbbi | ⊢ ((𝜑 ↔ 𝜓) → ∀𝑥(𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 380 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 2, 3 | hbim 1477 | . . 3 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 5 | 3, 2 | hbim 1477 | . . 3 ⊢ ((𝜓 → 𝜑) → ∀𝑥(𝜓 → 𝜑)) |
| 6 | 4, 5 | hban 1479 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → ∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 7 | 1, 6 | hbxfrbi 1401 | 1 ⊢ ((𝜑 ↔ 𝜓) → ∀𝑥(𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: euf 1946 sb8euh 1964 |
| Copyright terms: Public domain | W3C validator |