| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbbid | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbbi 1480. (Contributed by NM, 1-Jan-2002.) |
| Ref | Expression |
|---|---|
| hbbid.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbbid.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hbbid.3 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| Ref | Expression |
|---|---|
| hbbid | ⊢ (𝜑 → ((𝜓 ↔ 𝜒) → ∀𝑥(𝜓 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbbid.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | hbbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | hbbid.3 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 4 | 1, 2, 3 | hbimd 1505 | . . 3 ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 5 | 1, 3, 2 | hbimd 1505 | . . 3 ⊢ (𝜑 → ((𝜒 → 𝜓) → ∀𝑥(𝜒 → 𝜓))) |
| 6 | 4, 5 | anim12d 328 | . 2 ⊢ (𝜑 → (((𝜓 → 𝜒) ∧ (𝜒 → 𝜓)) → (∀𝑥(𝜓 → 𝜒) ∧ ∀𝑥(𝜒 → 𝜓)))) |
| 7 | dfbi2 380 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 8 | albiim 1416 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) ↔ (∀𝑥(𝜓 → 𝜒) ∧ ∀𝑥(𝜒 → 𝜓))) | |
| 9 | 6, 7, 8 | 3imtr4g 203 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) → ∀𝑥(𝜓 ↔ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |