| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbexd | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbex 1567. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| hbexd.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| hbexd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| hbexd | ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbexd.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | hbexd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | eximdh 1542 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦∀𝑥𝜓)) |
| 4 | 19.12 1595 | . 2 ⊢ (∃𝑦∀𝑥𝜓 → ∀𝑥∃𝑦𝜓) | |
| 5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |