![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq12d | GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifbieq12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
ifbieq12d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ifbieq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3370 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
3 | ifbieq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
4 | ifbieq12d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
5 | 3, 4 | ifeq12d 3368 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
6 | 2, 5 | eqtrd 2113 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ifcif 3351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-un 2977 df-if 3352 |
This theorem is referenced by: expival 9478 eucalgval2 10435 |
Copyright terms: Public domain | W3C validator |