![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfifd | GIF version |
Description: Deduction version of nfif 3377. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfifd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfifd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfifd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfifd | ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3352 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))} | |
2 | nfv 1461 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfifd.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfcrd 2232 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
5 | nfifd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfand 1500 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
7 | nfifd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
8 | 7 | nfcrd 2232 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
9 | 5 | nfnd 1587 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
10 | 8, 9 | nfand 1500 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ ¬ 𝜓)) |
11 | 6, 10 | nford 1499 | . . 3 ⊢ (𝜑 → Ⅎ𝑥((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))) |
12 | 2, 11 | nfabd 2237 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))}) |
13 | 1, 12 | nfcxfrd 2217 | 1 ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 Ⅎwnf 1389 ∈ wcel 1433 {cab 2067 Ⅎwnfc 2206 ifcif 3351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-if 3352 |
This theorem is referenced by: nfif 3377 |
Copyright terms: Public domain | W3C validator |