![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ex | GIF version |
Description: The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 3904. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
0ex | ⊢ ∅ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-nul 3904 | . . 3 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
2 | eq0 3266 | . . . 4 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | exbii 1536 | . . 3 ⊢ (∃𝑥 𝑥 = ∅ ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 144 | . 2 ⊢ ∃𝑥 𝑥 = ∅ |
5 | 4 | issetri 2608 | 1 ⊢ ∅ ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 ∅c0 3251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-nul 3252 |
This theorem is referenced by: 0elpw 3938 0nep0 3939 iin0r 3943 intv 3944 snexprc 3958 p0ex 3959 0elon 4147 onm 4156 ordtriexmidlem2 4264 ordtriexmid 4265 ordtri2orexmid 4266 ontr2exmid 4268 onsucsssucexmid 4270 onsucelsucexmidlem1 4271 onsucelsucexmid 4273 regexmidlem1 4276 reg2exmidlema 4277 ordsoexmid 4305 0elsucexmid 4308 ordpwsucexmid 4313 ordtri2or2exmid 4314 peano1 4335 finds 4341 finds2 4342 0elnn 4358 opthprc 4409 nfunv 4953 fun0 4977 acexmidlema 5523 acexmidlemb 5524 acexmidlemab 5526 ovprc 5560 1st0 5791 2nd0 5792 brtpos0 5890 reldmtpos 5891 tfr0 5960 rdg0 5997 frec0g 6006 1n0 6039 el1o 6043 fnom 6053 omexg 6054 om0 6061 nnsucsssuc 6094 en0 6298 ensn1 6299 en1 6302 2dom 6308 xp1en 6320 endisj 6321 php5dom 6349 ssfilem 6360 ssfiexmid 6361 domfiexmid 6363 diffitest 6371 ac6sfi 6379 indpi 6532 frecfzennn 9419 bj-d0clsepcl 10720 bj-indint 10726 bj-bdfindis 10742 bj-inf2vnlem1 10765 |
Copyright terms: Public domain | W3C validator |