| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mo4f | GIF version | ||
| Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| mo4f.1 | ⊢ Ⅎ𝑥𝜓 |
| mo4f.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| mo4f | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | mo3h 1994 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 3 | mo4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 4 | mo4f.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbie 1714 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | 5 | anbi2i 444 | . . . 4 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓)) |
| 7 | 6 | imbi1i 236 | . . 3 ⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 8 | 7 | 2albii 1400 | . 2 ⊢ (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 9 | 2, 8 | bitri 182 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 [wsb 1685 ∃*wmo 1942 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: mo4 2002 mob2 2772 moop2 4006 dffun4f 4938 |
| Copyright terms: Public domain | W3C validator |