ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun4f GIF version

Theorem dffun4f 4938
Description: Definition of function like dffun4 4933 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
Hypotheses
Ref Expression
dffun4f.1 𝑥𝐴
dffun4f.2 𝑦𝐴
dffun4f.3 𝑧𝐴
Assertion
Ref Expression
dffun4f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem dffun4f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffun4f.1 . . 3 𝑥𝐴
2 dffun4f.2 . . 3 𝑦𝐴
31, 2dffun6f 4935 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
4 nfcv 2219 . . . . . . 7 𝑦𝑥
5 nfcv 2219 . . . . . . 7 𝑦𝑤
64, 2, 5nfbr 3829 . . . . . 6 𝑦 𝑥𝐴𝑤
7 breq2 3789 . . . . . 6 (𝑦 = 𝑤 → (𝑥𝐴𝑦𝑥𝐴𝑤))
86, 7mo4f 2001 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
9 nfv 1461 . . . . . . 7 𝑤((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)
10 nfcv 2219 . . . . . . . . . 10 𝑧𝑥
11 dffun4f.3 . . . . . . . . . 10 𝑧𝐴
12 nfcv 2219 . . . . . . . . . 10 𝑧𝑦
1310, 11, 12nfbr 3829 . . . . . . . . 9 𝑧 𝑥𝐴𝑦
14 nfcv 2219 . . . . . . . . . 10 𝑧𝑤
1510, 11, 14nfbr 3829 . . . . . . . . 9 𝑧 𝑥𝐴𝑤
1613, 15nfan 1497 . . . . . . . 8 𝑧(𝑥𝐴𝑦𝑥𝐴𝑤)
17 nfv 1461 . . . . . . . 8 𝑧 𝑦 = 𝑤
1816, 17nfim 1504 . . . . . . 7 𝑧((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤)
19 breq2 3789 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝐴𝑧𝑥𝐴𝑤))
2019anbi2d 451 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝐴𝑦𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑤)))
21 equequ2 1639 . . . . . . . 8 (𝑧 = 𝑤 → (𝑦 = 𝑧𝑦 = 𝑤))
2220, 21imbi12d 232 . . . . . . 7 (𝑧 = 𝑤 → (((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤)))
239, 18, 22cbval 1677 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
2423albii 1399 . . . . 5 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
258, 24bitr4i 185 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2625albii 1399 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2726anbi2i 444 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
28 df-br 3786 . . . . . . 7 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
29 df-br 3786 . . . . . . 7 (𝑥𝐴𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3028, 29anbi12i 447 . . . . . 6 ((𝑥𝐴𝑦𝑥𝐴𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
3130imbi1i 236 . . . . 5 (((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
32312albii 1400 . . . 4 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
3332albii 1399 . . 3 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
3433anbi2i 444 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
353, 27, 343bitri 204 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282  wcel 1433  ∃*wmo 1942  wnfc 2206  cop 3401   class class class wbr 3785  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator