| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobidh | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| mobidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| mobidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidh | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | mobidh.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1545 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| 4 | 1, 2 | eubidh 1947 | . . 3 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| 5 | 3, 4 | imbi12d 232 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))) |
| 6 | df-mo 1945 | . 2 ⊢ (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓)) | |
| 7 | df-mo 1945 | . 2 ⊢ (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)) | |
| 8 | 5, 6, 7 | 3bitr4g 221 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∃!weu 1941 ∃*wmo 1942 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: euan 1997 |
| Copyright terms: Public domain | W3C validator |