ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobid GIF version

Theorem mobid 1976
Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobid.1 𝑥𝜑
mobid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobid (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))

Proof of Theorem mobid
StepHypRef Expression
1 mobid.1 . . . 4 𝑥𝜑
2 mobid.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2exbid 1547 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
41, 2eubid 1948 . . 3 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
53, 4imbi12d 232 . 2 (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)))
6 df-mo 1945 . 2 (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓))
7 df-mo 1945 . 2 (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))
85, 6, 73bitr4g 221 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wnf 1389  wex 1421  ∃!weu 1941  ∃*wmo 1942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-eu 1944  df-mo 1945
This theorem is referenced by:  mobidv  1977  rmobida  2540  rmoeq1f  2548
  Copyright terms: Public domain W3C validator