ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo GIF version

Theorem mormo 2565
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem mormo
StepHypRef Expression
1 moan 2010 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝑥𝐴𝜑))
2 df-rmo 2356 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
31, 2sylibr 132 1 (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  ∃*wmo 1942  ∃*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-rmo 2356
This theorem is referenced by:  reueq  2789  reusv1  4208
  Copyright terms: Public domain W3C validator