ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv1 GIF version

Theorem reusv1 4208
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
reusv1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 2397 . . . 4 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
21nfmo 1961 . . 3 𝑦∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)
3 rsp 2411 . . . . . . . 8 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
43impd 251 . . . . . . 7 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → ((𝑦𝐵𝜑) → 𝑥 = 𝐶))
54com12 30 . . . . . 6 ((𝑦𝐵𝜑) → (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶))
65alrimiv 1795 . . . . 5 ((𝑦𝐵𝜑) → ∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶))
7 moeq 2767 . . . . 5 ∃*𝑥 𝑥 = 𝐶
8 moim 2005 . . . . 5 (∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶) → (∃*𝑥 𝑥 = 𝐶 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
96, 7, 8mpisyl 1375 . . . 4 ((𝑦𝐵𝜑) → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
109ex 113 . . 3 (𝑦𝐵 → (𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
112, 10rexlimi 2470 . 2 (∃𝑦𝐵 𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
12 mormo 2565 . 2 (∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶) → ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
13 reu5 2566 . . 3 (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1413rbaib 863 . 2 (∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1511, 12, 143syl 17 1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  ∃*wmo 1942  wral 2348  wrex 2349  ∃!wreu 2350  ∃*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator