| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reueq | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 2394 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 2 | moeq 2767 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
| 3 | mormo 2565 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 4 | 2, 3 | ax-mp 7 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
| 5 | reu5 2566 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
| 6 | 4, 5 | mpbiran2 882 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 7 | 1, 6 | bitr4i 185 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃*wmo 1942 ∃wrex 2349 ∃!wreu 2350 ∃*wrmo 2351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-rex 2354 df-reu 2355 df-rmo 2356 df-v 2603 |
| This theorem is referenced by: divfnzn 8706 icoshftf1o 9013 |
| Copyright terms: Public domain | W3C validator |