ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3an2 GIF version

Theorem mp3an2 1256
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
mp3an2.1 𝜓
mp3an2.2 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mp3an2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mp3an2
StepHypRef Expression
1 mp3an2.1 . 2 𝜓
2 mp3an2.2 . . 3 ((𝜑𝜓𝜒) → 𝜃)
323expa 1138 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpanl2 425 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 921
This theorem is referenced by:  mp3anl2  1263  ordin  4140  ordsuc  4306  omv  6058  oeiv  6059  omv2  6068  1idprl  6780  muladd11  7241  negsub  7356  subneg  7357  ltaddneg  7528  muleqadd  7758  diveqap1  7793  conjmulap  7817  nnsub  8077  addltmul  8267  zltp1le  8405  gtndiv  8442  eluzp1m1  8642  divelunit  9024  fznatpl1  9093  flqbi2  9293  flqdiv  9323  frecfzen2  9420  nn0ennn  9425  iseqshft2  9452  faclbnd3  9670  shftfvalg  9706  ovshftex  9707  shftfval  9709  abs2dif  9992  omeo  10298  gcd0id  10370  sqgcd  10418  isprm3  10500
  Copyright terms: Public domain W3C validator