| Step | Hyp | Ref
| Expression |
| 1 | | simplr 496 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ ℂ) |
| 2 | | simpll 495 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝐴 ∈ ℂ) |
| 3 | 1, 2 | subcld 7419 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ ℂ) |
| 4 | | vex 2604 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 5 | | breldmg 4559 |
. . . . . . . . . . 11
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
| 6 | 4, 5 | mp3an2 1256 |
. . . . . . . . . 10
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
| 7 | 3, 6 | sylancom 411 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
| 8 | | npcan 7317 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 9 | 8 | eqcomd 2086 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
| 10 | 9 | ancoms 264 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
| 11 | 10 | adantr 270 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
| 12 | | oveq1 5539 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑤 + 𝐴) = ((𝑥 − 𝐴) + 𝐴)) |
| 13 | 12 | eqeq2d 2092 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥 − 𝐴) + 𝐴))) |
| 14 | 13 | rspcev 2701 |
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ dom 𝐹 ∧ 𝑥 = ((𝑥 − 𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
| 15 | 7, 11, 14 | syl2anc 403 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
| 16 | | vex 2604 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 17 | | eqeq1 2087 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴))) |
| 18 | 17 | rexbidv 2369 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))) |
| 19 | 16, 18 | elab 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
| 20 | 15, 19 | sylibr 132 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)}) |
| 21 | | brelrng 4583 |
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
| 22 | 4, 21 | mp3an2 1256 |
. . . . . . . 8
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
| 23 | 3, 22 | sylancom 411 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
| 24 | 20, 23 | jca 300 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)) |
| 25 | 24 | expl 370 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))) |
| 26 | 25 | ssopab2dv 4033 |
. . . 4
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}) |
| 27 | | df-xp 4369 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)} |
| 28 | 26, 27 | syl6sseqr 3046 |
. . 3
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹)) |
| 29 | | shftfval.1 |
. . . . . 6
⊢ 𝐹 ∈ V |
| 30 | 29 | dmex 4616 |
. . . . 5
⊢ dom 𝐹 ∈ V |
| 31 | 30 | abrexex 5764 |
. . . 4
⊢ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V |
| 32 | 29 | rnex 4617 |
. . . 4
⊢ ran 𝐹 ∈ V |
| 33 | 31, 32 | xpex 4471 |
. . 3
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V |
| 34 | | ssexg 3917 |
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) |
| 35 | 28, 33, 34 | sylancl 404 |
. 2
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) |
| 36 | | breq 3787 |
. . . . . 6
⊢ (𝑧 = 𝐹 → ((𝑥 − 𝑤)𝑧𝑦 ↔ (𝑥 − 𝑤)𝐹𝑦)) |
| 37 | 36 | anbi2d 451 |
. . . . 5
⊢ (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦))) |
| 38 | 37 | opabbidv 3844 |
. . . 4
⊢ (𝑧 = 𝐹 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)}) |
| 39 | | oveq2 5540 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 − 𝑤) = (𝑥 − 𝐴)) |
| 40 | 39 | breq1d 3795 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 − 𝑤)𝐹𝑦 ↔ (𝑥 − 𝐴)𝐹𝑦)) |
| 41 | 40 | anbi2d 451 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦))) |
| 42 | 41 | opabbidv 3844 |
. . . 4
⊢ (𝑤 = 𝐴 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 43 | | df-shft 9703 |
. . . 4
⊢ shift =
(𝑧 ∈ V, 𝑤 ∈ ℂ ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)}) |
| 44 | 38, 42, 43 | ovmpt2g 5655 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 45 | 29, 44 | mp3an1 1255 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 46 | 35, 45 | mpdan 412 |
1
⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |