ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv GIF version

Theorem gtndiv 8442
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 8046 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
213ad2ant2 960 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
3 simp1 938 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4 nngt0 8064 . . . 4 (𝐵 ∈ ℕ → 0 < 𝐵)
543ad2ant2 960 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵)
64adantl 271 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
7 0re 7119 . . . . . . . 8 0 ∈ ℝ
8 lttr 7185 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
97, 8mp3an1 1255 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
101, 9sylan 277 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
1110ancoms 264 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
126, 11mpand 419 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴))
13123impia 1135 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴)
142, 3, 5, 13divgt0d 8013 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴))
15 simp3 940 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
16 1re 7118 . . . . . . 7 1 ∈ ℝ
17 ltdivmul2 7956 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
1816, 17mp3an2 1256 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
192, 3, 13, 18syl12anc 1167 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
20 recn 7106 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120mulid2d 7137 . . . . . . 7 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2221breq2d 3797 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
23223ad2ant1 959 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
2419, 23bitrd 186 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴))
2515, 24mpbird 165 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1)
26 0p1e1 8153 . . 3 (0 + 1) = 1
2725, 26syl6breqr 3825 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1))
28 0z 8362 . . 3 0 ∈ ℤ
29 btwnnz 8441 . . 3 ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3028, 29mp3an1 1255 . 2 ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3114, 27, 30syl2anc 403 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986   < clt 7153   / cdiv 7760  cn 8039  cz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  prime  8446
  Copyright terms: Public domain W3C validator