| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version | ||
| Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| mpisyl.1 | ⊢ (𝜑 → 𝜓) |
| mpisyl.2 | ⊢ 𝜒 |
| mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpisyl | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
| This theorem is referenced by: ceqsex 2637 reusv1 4208 fliftcnv 5455 fliftfun 5456 tfrlemibfn 5965 ordiso 6447 uzsinds 9428 ltoddhalfle 10293 |
| Copyright terms: Public domain | W3C validator |