| Step | Hyp | Ref
| Expression |
| 1 | | odd2np1 10272 |
. . 3
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) = 𝑁)) |
| 2 | | halfre 8244 |
. . . . . . . . . . . . . . . 16
⊢ (1 / 2)
∈ ℝ |
| 3 | 2 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (1 / 2)
∈ ℝ) |
| 4 | | 1red 7134 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 1 ∈
ℝ) |
| 5 | | zre 8355 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
| 6 | 3, 4, 5 | 3jca 1118 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → ((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ)) |
| 7 | 6 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ)) |
| 8 | | halflt1 8248 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
< 1 |
| 9 | | axltadd 7182 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1
→ (𝑛 + (1 / 2)) <
(𝑛 + 1))) |
| 10 | 7, 8, 9 | mpisyl 1375 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1)) |
| 11 | | zre 8355 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 12 | 11 | adantl 271 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℝ) |
| 13 | 5, 3 | readdcld 7148 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈
ℝ) |
| 14 | 13 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈
ℝ) |
| 15 | | peano2z 8387 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (𝑛 + 1) ∈
ℤ) |
| 16 | 15 | zred 8469 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (𝑛 + 1) ∈
ℝ) |
| 17 | 16 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈
ℝ) |
| 18 | | lttr 7185 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧
(𝑛 + 1) ∈ ℝ)
→ ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1))) |
| 19 | 12, 14, 17, 18 | syl3anc 1169 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1))) |
| 20 | 10, 19 | mpan2d 418 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1))) |
| 21 | | zleltp1 8406 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ≤ 𝑛 ↔ 𝑀 < (𝑛 + 1))) |
| 22 | 21 | ancoms 264 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑛 ↔ 𝑀 < (𝑛 + 1))) |
| 23 | 20, 22 | sylibrd 167 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 ≤ 𝑛)) |
| 24 | | halfgt0 8246 |
. . . . . . . . . . . 12
⊢ 0 < (1
/ 2) |
| 25 | 3, 5 | jca 300 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → ((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ)) |
| 26 | 25 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ)) |
| 27 | | ltaddpos 7556 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2)))) |
| 28 | 26, 27 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 <
(1 / 2) ↔ 𝑛 <
(𝑛 + (1 /
2)))) |
| 29 | 24, 28 | mpbii 146 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2))) |
| 30 | 5 | adantr 270 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈
ℝ) |
| 31 | | lelttr 7199 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ)
→ ((𝑀 ≤ 𝑛 ∧ 𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2)))) |
| 32 | 12, 30, 14, 31 | syl3anc 1169 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 ≤ 𝑛 ∧ 𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2)))) |
| 33 | 29, 32 | mpan2d 418 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑛 → 𝑀 < (𝑛 + (1 / 2)))) |
| 34 | 23, 33 | impbid 127 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀 ≤ 𝑛)) |
| 35 | | zcn 8356 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
| 36 | | 1cnd 7135 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 1 ∈
ℂ) |
| 37 | | 2cn 8110 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
| 38 | | 2ap0 8132 |
. . . . . . . . . . . . . 14
⊢ 2 #
0 |
| 39 | 37, 38 | pm3.2i 266 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ ∧ 2 # 0) |
| 40 | 39 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → (2 ∈
ℂ ∧ 2 # 0)) |
| 41 | | muldivdirap 7795 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2))) |
| 42 | 35, 36, 40, 41 | syl3anc 1169 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (((2
· 𝑛) + 1) / 2) =
(𝑛 + (1 /
2))) |
| 43 | 42 | breq2d 3797 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2)))) |
| 44 | 43 | adantr 270 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2)))) |
| 45 | | 2z 8379 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℤ |
| 46 | 45 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 2 ∈
ℤ) |
| 47 | | id 19 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℤ) |
| 48 | 46, 47 | zmulcld 8475 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℤ) |
| 49 | 48 | zcnd 8470 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℂ) |
| 50 | 49 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2
· 𝑛) ∈
ℂ) |
| 51 | | pncan1 7481 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑛) ∈ ℂ
→ (((2 · 𝑛) +
1) − 1) = (2 · 𝑛)) |
| 52 | 50, 51 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) − 1)
= (2 · 𝑛)) |
| 53 | 52 | oveq1d 5547 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) − 1)
/ 2) = ((2 · 𝑛) /
2)) |
| 54 | | 2cnd 8112 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 2 ∈
ℂ) |
| 55 | 38 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 2 #
0) |
| 56 | 35, 54, 55 | divcanap3d 7882 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → ((2
· 𝑛) / 2) = 𝑛) |
| 57 | 56 | adantr 270 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2
· 𝑛) / 2) = 𝑛) |
| 58 | 53, 57 | eqtrd 2113 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) − 1)
/ 2) = 𝑛) |
| 59 | 58 | breq2d 3797 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔
𝑀 ≤ 𝑛)) |
| 60 | 34, 44, 59 | 3bitr4d 218 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) /
2))) |
| 61 | | oveq1 5539 |
. . . . . . . . . 10
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2)) |
| 62 | 61 | breq2d 3797 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2))) |
| 63 | | oveq1 5539 |
. . . . . . . . . . 11
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1)) |
| 64 | 63 | oveq1d 5547 |
. . . . . . . . . 10
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) /
2)) |
| 65 | 64 | breq2d 3797 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) |
| 66 | 62, 65 | bibi12d 233 |
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))) |
| 67 | 60, 66 | syl5ibcom 153 |
. . . . . . 7
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))) |
| 68 | 67 | ex 113 |
. . . . . 6
⊢ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) |
| 69 | 68 | adantl 271 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) |
| 70 | 69 | com23 77 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) |
| 71 | 70 | rexlimdva 2477 |
. . 3
⊢ (𝑁 ∈ ℤ →
(∃𝑛 ∈ ℤ
((2 · 𝑛) + 1) =
𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) |
| 72 | 1, 71 | sylbid 148 |
. 2
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) |
| 73 | 72 | 3imp 1132 |
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) |