ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2331
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2329 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 120 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-ne 2246
This theorem is referenced by:  difsnb  3528  0nelop  4003  fidifsnen  6355  ltned  7224  lt0ne0  7532  zdceq  8423  zneo  8448  xrlttri3  8872  qdceq  9256  flqltnz  9289  expival  9478  nn0opthd  9649  isprm2lem  10498
  Copyright terms: Public domain W3C validator