ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd GIF version

Theorem nn0opthd 9649
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3407 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthd (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
3 nn0opthd.3 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ0)
4 nn0opthd.4 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
53, 4nn0addcld 8345 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + 𝐷) ∈ ℕ0)
61, 2, 5, 4nn0opthlem2d 9648 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
76imp 122 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
87necomd 2331 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
98ex 113 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
101, 2nn0addcld 8345 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
113, 4, 10, 2nn0opthlem2d 9648 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
129, 11jaod 669 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
1310nn0red 8342 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
145nn0red 8342 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
15 reaplt 7688 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1613, 14, 15syl2anc 403 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1710, 10nn0mulcld 8346 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℕ0)
1817, 2nn0addcld 8345 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℕ0)
1918nn0zd 8467 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ)
205, 5nn0mulcld 8346 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 + 𝐷) · (𝐶 + 𝐷)) ∈ ℕ0)
2120, 4nn0addcld 8345 . . . . . . . . . . . 12 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℕ0)
2221nn0zd 8467 . . . . . . . . . . 11 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ)
23 zapne 8422 . . . . . . . . . . 11 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2419, 22, 23syl2anc 403 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2512, 16, 243imtr4d 201 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2625con3d 593 . . . . . . . 8 (𝜑 → (¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
2718nn0cnd 8343 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ)
2821nn0cnd 8343 . . . . . . . . 9 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ)
29 apti 7722 . . . . . . . . 9 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3027, 28, 29syl2anc 403 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3110nn0cnd 8343 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
325nn0cnd 8343 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
33 apti 7722 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3431, 32, 33syl2anc 403 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3526, 30, 343imtr4d 201 . . . . . . 7 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)))
3635imp 122 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
37 simpr 108 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
3836, 36oveq12d 5550 . . . . . . . . . 10 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
3938oveq1d 5547 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
4037, 39eqtr4d 2116 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷))
4131, 31mulcld 7139 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ)
422nn0cnd 8343 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
434nn0cnd 8343 . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
4441, 42, 43addcand 7292 . . . . . . . . 9 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4544adantr 270 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4640, 45mpbid 145 . . . . . . 7 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐵 = 𝐷)
4746oveq2d 5548 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐶 + 𝐵) = (𝐶 + 𝐷))
4836, 47eqtr4d 2116 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐵))
491nn0cnd 8343 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
503nn0cnd 8343 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5149, 50, 42addcan2d 7293 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5251adantr 270 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5348, 52mpbid 145 . . . 4 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐴 = 𝐶)
5453, 46jca 300 . . 3 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
5554ex 113 . 2 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
56 oveq12 5541 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
5756, 56oveq12d 5550 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
58 simpr 108 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
5957, 58oveq12d 5550 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
6055, 59impbid1 140 1 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  wne 2245   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980   + caddc 6984   · cmul 6986   < clt 7153   # cap 7681  0cn0 8288  cz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  nn0opth2d  9650
  Copyright terms: Public domain W3C validator