ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdceq GIF version

Theorem zdceq 8423
Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zdceq ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)

Proof of Theorem zdceq
StepHypRef Expression
1 ztri3or 8394 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 8355 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 ltne 7196 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
43necomd 2331 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 olc 664 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵𝐴𝐵))
6 dcne 2256 . . . . . . . 8 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
75, 6sylibr 132 . . . . . . 7 (𝐴𝐵DECID 𝐴 = 𝐵)
84, 7syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → DECID 𝐴 = 𝐵)
98ex 113 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
109adantr 270 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
112, 10sylan 277 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵DECID 𝐴 = 𝐵))
12 orc 665 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴𝐵))
1312, 6sylibr 132 . . . 4 (𝐴 = 𝐵DECID 𝐴 = 𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵DECID 𝐴 = 𝐵))
15 zre 8355 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
16 ltne 7196 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → 𝐴𝐵)
1716, 7syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → DECID 𝐴 = 𝐵)
1817ex 113 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
1915, 18syl 14 . . . 4 (𝐵 ∈ ℤ → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2019adantl 271 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴DECID 𝐴 = 𝐵))
2111, 14, 203jaod 1235 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 = 𝐵))
221, 21mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  DECID wdc 775  w3o 918   = wceq 1284  wcel 1433  wne 2245   class class class wbr 3785  cr 6980   < clt 7153  cz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  nn0n0n1ge2b  8427  nn0lt2  8429  prime  8446  elnn1uz2  8694  expival  9478  dvdsdc  10203  zdvdsdc  10216  dvdsabseq  10247  alzdvds  10254  fzo0dvdseq  10257  gcdmndc  10340  gcdsupex  10349  gcdsupcl  10350  gcd0id  10370  gcdaddm  10375  dfgcd2  10403  gcdmultiplez  10410  dvdssq  10420  nn0seqcvgd  10423  algcvgblem  10431  eucalgval2  10435  lcmmndc  10444  lcmdvds  10461  lcmid  10462  mulgcddvds  10476  cncongr2  10486  isprm3  10500  isprm4  10501  prm2orodd  10508  rpexp  10532
  Copyright terms: Public domain W3C validator