![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nf4dc | GIF version |
Description: Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1601, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.) |
Ref | Expression |
---|---|
nf4dc | ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf2 1598 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | imordc 829 | . . 3 ⊢ (DECID ∃𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))) | |
3 | 1, 2 | syl5bb 190 | . 2 ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))) |
4 | orcom 679 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
5 | alnex 1428 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
6 | 5 | orbi2i 711 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
7 | 4, 6 | bitr4i 185 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
8 | 3, 7 | syl6bb 194 | 1 ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∨ wo 661 DECID wdc 775 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-fal 1290 df-nf 1390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |