| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfa2 | GIF version | ||
| Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1474 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfal 1508 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: cbv1h 1673 csbie2t 2950 copsex2t 4000 fnoprabg 5622 strcollnft 10779 |
| Copyright terms: Public domain | W3C validator |