ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsex2t GIF version

Theorem copsex2t 4000
Description: Closed theorem form of copsex2g 4001. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
copsex2t ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2t
StepHypRef Expression
1 elisset 2613 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2613 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
31, 2anim12i 331 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 eeanv 1848 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylibr 132 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
6 nfa1 1474 . . . 4 𝑥𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
7 nfe1 1425 . . . . 5 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
8 nfv 1461 . . . . 5 𝑥𝜓
97, 8nfbi 1521 . . . 4 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
10 nfa2 1511 . . . . 5 𝑦𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
11 nfe1 1425 . . . . . . 7 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1211nfex 1568 . . . . . 6 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
13 nfv 1461 . . . . . 6 𝑦𝜓
1412, 13nfbi 1521 . . . . 5 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
15 opeq12 3572 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 copsexg 3999 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1716eqcoms 2084 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1815, 17syl 14 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1918adantl 271 . . . . . . 7 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
20 sp 1441 . . . . . . . . 9 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ∀𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)))
212019.21bi 1490 . . . . . . . 8 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)))
2221imp 122 . . . . . . 7 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑𝜓))
2319, 22bitr3d 188 . . . . . 6 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
2423ex 113 . . . . 5 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
2510, 14, 24exlimd 1528 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
266, 9, 25exlimd 1528 . . 3 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
2726imp 122 . 2 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
285, 27sylan2 280 1 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407
This theorem is referenced by:  opelopabt  4017
  Copyright terms: Public domain W3C validator