| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfceqdf | GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfceqdf.1 | ⊢ Ⅎ𝑥𝜑 |
| nfceqdf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfceqdf | ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfceqdf.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq2d 2148 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 1, 3 | nfbidf 1472 | . . 3 ⊢ (𝜑 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 5 | 4 | albidv 1745 | . 2 ⊢ (𝜑 → (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 6 | df-nfc 2208 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 7 | df-nfc 2208 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 221 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 |
| This theorem is referenced by: nfopd 3587 dfnfc2 3619 nfimad 4697 nffvd 5207 |
| Copyright terms: Public domain | W3C validator |