| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfccdeq | GIF version | ||
| Description: Variation of nfcdeq 2812 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfccdeq.1 | ⊢ Ⅎ𝑥𝐴 |
| nfccdeq.2 | ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfccdeq | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfccdeq.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2213 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 3 | equid 1629 | . . . . 5 ⊢ 𝑧 = 𝑧 | |
| 4 | 3 | cdeqth 2802 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝑧 = 𝑧) |
| 5 | nfccdeq.2 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | 4, 5 | cdeqel 2811 | . . 3 ⊢ CondEq(𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 7 | 2, 6 | nfcdeq 2812 | . 2 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 7 | eqriv 2078 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 Ⅎwnfc 2206 CondEqwcdeq 2798 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-cdeq 2799 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |