| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfrd | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2215 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | sylibr 132 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 |
| This theorem is referenced by: nfcsb1d 2936 nfcsbd 2939 nfifd 3376 nfunid 3608 nfiotadxy 4890 nfriotadxy 5496 nfovd 5554 nfnegd 7304 |
| Copyright terms: Public domain | W3C validator |