ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr GIF version

Theorem nffr 4104
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-frind 4087 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
4 nfcv 2219 . . . 4 𝑥𝑠
52, 3, 4nffrfor 4103 . . 3 𝑥 FrFor 𝑅𝐴𝑠
65nfal 1508 . 2 𝑥𝑠 FrFor 𝑅𝐴𝑠
71, 6nfxfr 1403 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wal 1282  wnf 1389  wnfc 2206   FrFor wfrfor 4082   Fr wfr 4083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-frfor 4086  df-frind 4087
This theorem is referenced by:  nfwe  4110
  Copyright terms: Public domain W3C validator