ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadxy GIF version

Theorem nfiotadxy 4890
Description: Deduction version of nfiotaxy 4891. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadxy.1 𝑦𝜑
nfiotadxy.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotadxy (𝜑𝑥(℩𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfiotadxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4888 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1461 . . . 4 𝑧𝜑
3 nfiotadxy.1 . . . . 5 𝑦𝜑
4 nfiotadxy.2 . . . . . 6 (𝜑 → Ⅎ𝑥𝜓)
5 nfcv 2219 . . . . . . . 8 𝑥𝑦
6 nfcv 2219 . . . . . . . 8 𝑥𝑧
75, 6nfeq 2226 . . . . . . 7 𝑥 𝑦 = 𝑧
87a1i 9 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
94, 8nfbid 1520 . . . . 5 (𝜑 → Ⅎ𝑥(𝜓𝑦 = 𝑧))
103, 9nfald 1683 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
112, 10nfabd 2237 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
1211nfunid 3608 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
131, 12nfcxfrd 2217 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wnf 1389  {cab 2067  wnfc 2206   cuni 3601  cio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-sn 3404  df-uni 3602  df-iota 4887
This theorem is referenced by:  nfiotaxy  4891  nfriotadxy  5496
  Copyright terms: Public domain W3C validator