![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbco2v | GIF version |
Description: This is a version of sbco2 1880 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbco2v.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2v.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | sbco2vlem 1861 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
3 | 2 | sbbii 1688 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
4 | ax-17 1459 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) | |
5 | 4 | sbco2vlem 1861 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
6 | ax-17 1459 | . . 3 ⊢ (𝜑 → ∀𝑤𝜑) | |
7 | 6 | sbco2vlem 1861 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 3, 5, 7 | 3bitr3i 208 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
This theorem is referenced by: nfsb 1863 equsb3 1866 sbn 1867 sbim 1868 sbor 1869 sban 1870 sbco2vd 1882 sbco3v 1884 sbcom2v2 1903 sbcom2 1904 dfsb7 1908 sb7f 1909 sbal 1917 sbal1 1919 sbex 1921 |
Copyright terms: Public domain | W3C validator |