ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriota GIF version

Theorem cbvriota 5498
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
cbvriota.1 𝑦𝜑
cbvriota.2 𝑥𝜓
cbvriota.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriota (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2141 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 sbequ12 1694 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
31, 2anbi12d 456 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
4 nfv 1461 . . . 4 𝑧(𝑥𝐴𝜑)
5 nfv 1461 . . . . 5 𝑥 𝑧𝐴
6 nfs1v 1856 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
75, 6nfan 1497 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
83, 4, 7cbviota 4892 . . 3 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑))
9 eleq1 2141 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
10 sbequ 1761 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
11 cbvriota.2 . . . . . . 7 𝑥𝜓
12 cbvriota.3 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
1311, 12sbie 1714 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
1410, 13syl6bb 194 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
159, 14anbi12d 456 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
16 nfv 1461 . . . . 5 𝑦 𝑧𝐴
17 cbvriota.1 . . . . . 6 𝑦𝜑
1817nfsb 1863 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1916, 18nfan 1497 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
20 nfv 1461 . . . 4 𝑧(𝑦𝐴𝜓)
2115, 19, 20cbviota 4892 . . 3 (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦𝐴𝜓))
228, 21eqtri 2101 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
23 df-riota 5488 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
24 df-riota 5488 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2522, 23, 243eqtr4i 2111 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wnf 1389  wcel 1433  [wsb 1685  cio 4885  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-sn 3404  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  cbvriotav  5499
  Copyright terms: Public domain W3C validator