| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbc1d | GIF version | ||
| Description: Deduction version of nfsbc1 2832. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1d.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfsbc1d | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 2816 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 2 | nfsbc1d.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfab1 2221 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑥 ∣ 𝜓}) |
| 5 | 2, 4 | nfeld 2234 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| 6 | 1, 5 | nfxfrd 1404 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1389 ∈ wcel 1433 {cab 2067 Ⅎwnfc 2206 [wsbc 2815 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-sbc 2816 |
| This theorem is referenced by: nfsbc1 2832 nfcsb1d 2936 |
| Copyright terms: Public domain | W3C validator |