ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld GIF version

Theorem nfeld 2234
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2077 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1461 . . 3 𝑦𝜑
3 nfcvd 2220 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2233 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2232 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1500 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 1684 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1404 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wnf 1389  wex 1421  wcel 1433  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by:  nfneld  2347  nfraldxy  2398  nfrexdxy  2399  nfreudxy  2527  nfsbc1d  2831  nfsbcd  2834  sbcrext  2891  nfbrd  3828  nfriotadxy  5496
  Copyright terms: Public domain W3C validator