| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeld | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2077 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1461 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2220 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeqd 2233 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 6 | nfcrd 2232 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 8 | 5, 7 | nfand 1500 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 2, 8 | nfexd 1684 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | 1, 9 | nfxfrd 1404 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 |
| This theorem is referenced by: nfneld 2347 nfraldxy 2398 nfrexdxy 2399 nfreudxy 2527 nfsbc1d 2831 nfsbcd 2834 sbcrext 2891 nfbrd 3828 nfriotadxy 5496 |
| Copyright terms: Public domain | W3C validator |